Sources of Fecal Contamination in the Dolomite Aquifer in Northeastern Wisconsin

Mark Borchardt, Maureen Muldoon & Sue Spencer

USDA-Agricultural Research Service

UW-Oshkosh Department of Geology

Randall Hunt, Joel Stokdyk & Aaron Firnstahl

USGS Wisconsin Water Science Center

Davina Bonness & Kevin Masarik

Kewaunee County Land and Water Conservation

UW-Stevens Point Watershed Science and Education

Eurney Kieke

Marshfield Clinic Research Foundation

Silurian Dolomite Aquifer

Photos courtesy of Ken Bradbury and Maureen Muldoon

Silurian Dolomite Aquifer Characteristics

- Dense and ubiquitous fracture network
 - little surface runoff
 - water easily infiltrates to subsurface
- Recharge
 - exceedingly rapid
 - carries surface contaminants to the water table
- Flow within the aquifer occurs primarily along bedding plane fractures
 - Little to no attenuation of contaminants within the aquifer
- Flow rates vary from 10's to 100's of ft/day

Slide courtesy of Maureen Muldoon

Brown Water Events in Northeast Wisconsin

- Groundwater recharge, especially spring snow melt, can generate brown water events
- Several outbreaks associated with these events e.g., EHEC,
 Campylobacter jejuni
- This well is code compliant, 123 ft deep, cased to 63 ft

Photos courtesy of Chuck Wagner

Kewaunee County CAFOs

- In WI, Concentrated Animal Feeding Operations (CAFOs) are defined as those farms having > 1000 animal units
- Kewaunee County has 16 CAFOs (15 dairy and one beef operation)
- 98,000 cows, heifers, and calves in the county

Manure Application

Timing

- in Fall (after harvest) andSpring (prior to planting)
- Application rates
 - determined by Nutrient
 Management Plans
 (NMPs) that are designed
 to maximize crop yields
 while minimizing surface
 runoff
 - Protective rate of application in fractured rock areas is 25 tons/acre (or ~9000 gallons)

Kewaunee County Nutrient Management - CAFO

Political/Social Context

- Citizen activists hired attorneys to challenge a WPDES permit for a CAFO expansion
- Have petitioned U.S.
 EPA to intervene under emergency powers of SDWA

Current Research Objectives

- Design a county-wide randomized sampling plan, stratified by depth-to-bedrock, for nitrate and indicator bacteria
- Sample once per season a subset of wells for viruses and fecal markers capable of distinguishing septic versus bovine sources of contamination
- Install automated sampling systems on one or two wells to determine the timing of peak transport for viruses and indicator bacteria
- Identify spatial and temporal patterns of contamination

Objective I

- County-wide randomized sampling of private wells stratified by depth-to-bedrock: <5 ft, 5-20 ft, > 20 ft
- Participation rate ~ 50%
- Several day "Synoptic" sampling
- Recharge
 - November 2015
 - 317 wells in analysis
- No recharge
 - July 2016
 - 400 wells in analysis

Kewaunee County Contamination Rate by Depth to Bedrock

		Recharge - Nov 15		No recharge – July 16	
			P-value		P-value
	Depth to	Estimated	chi	Estimated	chi
	bedrock	contamination	square	contamination	square
Indicator	(ft)	rate (%)	test	rate (%)	test
Total	<5	46	0.047	23	0.43
coliform	5-20	28		29	
	>20	19		21	
E. coli	<5	4	0.49	7	0.46
	5-20	1		1	
	>20	0.3		1	
Nitrate-N	<5	7	0.11	10	0.026
> 10 ppm	5-20	20		19	
	>20	6		5	
TC or E.	<5	50	0.019	33	0.088
coli or	5-20	42		40	
high nitrate	>20	23		26	
. E E SEX SOUTH SE SOUT					

County-wide contamination, weighted analysis: 26% (recharge) to 28% (non-recharge)

Objective 2

- Determine source of fecal contamination
- Randomized stratified sampling from 234 wells positive for TC, E. coli, or N-NO3 > 10 ppm
- Five sampling rounds, all completed:
 - April, August, November, 2016
 - January and March, 2017

Microbes: Identifying the Fecal Source

(n = 138 samples from 131 wells) (red font indicates pathogenic)

			Concentration
Host	Microorganism	Wells	(gene copies/L)
Human- specific	Adenovirus A	1	1
	Bacteroidales-like Hum M2	7	< 1 – 1050
	Human Bacteroides	27	< 1 – 34
	Cryptosporidium hominis	1	qualitative
	AII	29	
	Bacteroidales-like Cow M2	2	29 - 915
D011110	Bacteroidales-like Cow M3	4	3 – 49818
	Bovine Bacteroides	36	< 1 – 42398
	Bovine polyomavirus	8	< 1 – 451
	Bovine enterovirus	1	2
	All	40	

Not detected: [human-specific] adenovirus B & C, D, F, enterovirus, human polyomavirus, norovirus GI & GII [bovine-specific] coronavirus, bovine diarrheal virus 1 & 2

			Concentration
Host	Microorganism	Wells	(gene copies/L)
	Campylobacter jejuni	1	< 1
	Cryptosporidium parvum	8	qualitative
	Cryptosporidium spp.	16	< 1 – 3
	Giardia lamblia	2	< 1
	Pathogenic <i>E. coli</i> (eae gene)	1	4
	Pathogenic E. coli (stx1 gene)	1	16
Non-	Pathogenic E. coli (stx2 gene)	1	1
specific	Pepper mild mottle virus	13	2 - 3811
	Rotavirus A (NSP3 gene)	17	< 1 – 4481
	Rotavirus A (<i>VP7</i> gene)	7	< 1 – 732
	Rotavirus C	3	45 – 1301
	Salmonella (invA gene)	3	< 1 – 13
	Salmonella (ttr gene)	5	5 – 59
	AII	44	
	Total positive wells	79	< 1 - 49818

Well Contamination Scoreboard

Not included: Rotavirus group A detections by qPCR are not human- or bovine-specific; subsequent typing will determine host specificity

Number of contaminated samples & wells

	Total	Negative	Positive	% Positive
Samples	138	56	82	59
Wells	131	52	79	60

Wells tested for microorganisms were selected from wells previously positive for total coliform or high nitrate (> 10 ppm N-NO₃-)

Bacteroides Sequencing

Bacteroides dorei CL03T12C01, complete genome Alignment statistics for match #1 Score Strand Expect Identities Gaps 126/126(100%) 0/126(0%) Plus/Plus 233 bits(126) 6e-58 Features: rRNA-16S ribosomal RNA Query 10 CTTCCTCTCAGAACCCCTATCCATCGTTGACTAGGTGGGCCGTTACCCCGCCTACTATCT 69 Sbjct 379235 CTTCCTCTCAGAACCCCTATCCATCGTTGACTAGGTGGGCCGTTACCCCGCCTACTATCT 379294 Query 70 AATGGAACGCATCCCCATCGTCTACCGGAAAATACCTTTAATCATGCGGACATGTGAACT 129 Sbict 379295 AATGGAACGCATCCCCATCGTCTACCGGAAAATACCTTTAATCATGCGGACATGTGAACT 379354 Query 130 CATGAT 135 Sbict 379355 CATGAT 379360

- Human-specific Bacteroides: 19 samples sequenced, all match human (9 samples still to be sequenced)
- Bovine-specific Bacteroides: 27 samples sequenced, all match bovine (3 samples still to be sequenced)
- No sequences matched qPCR positive controls (i.e., no lab contamination)

Rotavirus Group A Subtyping

Source	G-Type	P-Type	Number of samples
Human	G1	P[8]	5
Bovine	G10	P[11]	6
Human and Bovine	G1/G10	P[8]/P[11]	2

Four rotavirus positive samples from the March sampling still need subtyping

Kewaunee County Septic Systems

- 4822 septic systems in the county
- 540 holding tanks, 155 abandoned

Personal comm. Lee Luft, Kewaunee County Supervisor, March 7, 2017

Legend

Purple = replaced or inspected
Red = not inspected
Yellow = holding tank
Blue = abandoned system

Roughly 200 million gallons septic effluent per year released to the subsurface

Conceptual Model of Fecal Contamination in Kewaunee County - 1

Conceptual Model of Fecal Contamination in Kewaunee County - 2

Groundwater Levels during MST Sampling

USGS 443535087345401 KW-25/24E/34-0183

- —— Daily median depth to water level 📟 Period of provisional data
- Period of approved data

From Farm Field to Household Well

> 1 inch rain Oct 26, 2016

House near field

Farm field sampled Oct 27, 2016

Bovine Bacteroides Bovine enterovirus Bovine polyomavirus M2 Bacteroides-like M3 Bacteroides-like

Rotavirus A NSP3 Rotavirus A VP7 Rotavirus C

Tap water Oct 27, 2016

Bovine Bacteroides
Bovine enterovirus
Bovine polyomavirus
M2 Bacteroides-like
M3 Bacteroides-like
Campylobacter jejuni
Cryptosporidium
Rotavirus A NSP3
Rotavirus A VP7
Rotavirus C

From Farm Field to Household Well

> 1 inch rain Oct 26, 2016

House near field

Neighbor's well sampled Oct 31, 2016

Bovine Bacteroides

Bovine polyomavirus M2 Bacteroides-like M3 Bacteroides-like

Rotavirus A NSP3 Rotavirus A VP7 Rotavirus C

Tap water Oct 27, 2016

Bovine Bacteroides
Bovine enterovirus
Bovine polyomavirus
M2 Bacteroides-like
M3 Bacteroides-like
Campylobacter jejuni
Cryptosporidium
Rotavirus A NSP3
Rotavirus A VP7
Rotavirus C

Objective 3

- Use automated samplers to analyze the time-series of fecal contamination to:
 - identify time periods/recharge conditions that lead to the highest pathogen loads
 - identify real-time measured parameters (e.g. Cl) predictive of pathogen contamination
 - relate pathogen loading to the manure runoff risk predictions for surface water

Summary

- By stratified random sampling it is estimated 26% to 28% of private wells in Kewaunee County are positive for TC, E. coli, or nitrate-N > 10 ppm
- Well contamination results from both human and bovine fecal sources
- Wells are contaminated with pathogens of significant concern: Salmonella, EHEC, Cryptosporidium, rotavirus
- Future work will determine how fecal source, pathogen types, and pathogen concentrations are associated with well construction, hydrogeological, and environmental variables

Questions? Comments?

